REMARKS ON CONSERVATIVE MARKOV PROCESSES*

BY

S. R.. FOGUEL

ABSTRACT

Necessary and sufficient conditions, for a Markov process to be conservative, are studied. As a consequence it is proved: 1. If \tilde{P} is conservative so is P^k . 2. P is conservative if and only if the probability of returning to *A,* from a point in A , is one.

Let (X, Σ, m) be a σ finite measure space and P an operator on $L_1(X, \Sigma, m)$ with $||uP|| \le ||u||$, $u \ge 0 \Rightarrow uP \ge 0$. Denote the adjoint operator on L_{∞} by Pf : $\langle uP, f \rangle = \langle u, Pf \rangle$ then $f \ge 0 \Rightarrow Pf \ge 0$ and $P1 \le 1$. Let $X \subset \cup D$ be the Hopf decomposition of X into conservative and dissipative parts [see 3, (2.2) and (2.3)].

THEOREM.. There exists a sequence of functions h_k with the following prop*erties:*

- (a) $0 \le h_k \le h_{k+1} \le 1$.
- (b) $h_k(x) = 0$ if $x \in C$, $h_k(x) > 0$ if $x \in D$.
- (c) $Ph_k \leq h_k$ and $\lim_{n \to \infty} P^n h_k = 0$.
- (d) If $D_k = \{x : h_k(x) = 1\}$ then $D_k \uparrow D$.

Proof. Let $0 < u \in L_1$ then $\sum_{n=0}^{\infty} u P^n(x) < \infty$ for $x \in D$. Choose $f \in L_\infty$ such that $f(x) = 0$ $x \in C$, $f(x) > 0$ $x \in D$ and $\langle \sum_{n=0}^{\infty} u P^{n}, f \rangle < \infty$. By Fatou's Lemma $\langle u, \sum_{n=0}^{\infty} P^n f \rangle \infty$ < and since $u > 0$ it follows that $g = \sum_{n=0}^{\infty} P^n f \langle \infty$. Now note that $g(x) = 0$ if $x \in C$ by [3, (2.4)]. Also

$$
g(x) > 0
$$
 $x \in D$, $Pg \leq g$ and $P^j g = \sum_{n=j}^{\infty} P^n f_{j \to \infty} \to 0$.

We apply P to g, which is not in L_{∞} by [3, (1.9)]. Put $h = min(g, 1)$ then:

$$
0 \le h \le 1, 0 < h(x) \times \varepsilon D, h(x) = 0 \times \varepsilon C, Ph \le h \text{ and } P'h \to 0; j \to \infty:
$$
\n
$$
Ph \le \min(Pg, P1) \le \min(g, 1) = h \text{ and } P'h \le P^j g \to 0.
$$

Finally let us define inductively $h_1 = h h_k = k \min((1/k), h_{k-1})$. If $h_{k-1}(x) \ge (1/k)$ then $h_k(x) = 1 \ge h_{k-1}(x)$ but if $h_{k-1}(x) < (1/k)$ $h_k(x) = kh_{k-1}(x) \ge h_{k-1}(x)$ which proves (a). Condition (b) is clear. Now if (c) holds for h_{k-1} then

Received 9, December 1968.

^{*} The research reported in this document has been sponsored by the Air Force of Scientific Research under Grant AF EOAR 66-18, through the European Office of Aerospace Research (OAR), United States Air Force.

$$
Ph_k \leqq k \min\left(P\frac{1}{k}, Ph_{k-1}\right) \leqq k \min\left(\frac{1}{k}, h_{k-1}\right) = h_k
$$

and $P^n h_k \leq k P^n h_{k-1} \to 0$.

Finally if $x \in D$ then $h(x) = h_1(x) > (1/k)$ for some k so $h_{k-1}(x) > (1/k)$ and $h_{k}(x) = 1.$

CORROLLARY. 1. *The following conditions are equivalent:*

1. $X = C$.

- 2. If $0 \leq f < \infty$ and $Pf \leq f$ then $Pf = f$.
- 3. If $0 \le f \le 1$ and $Pf \le f$ then $Pf = f$.
- 4. If $0 \le f \le 1$ and $Pf \le f$ and $\lim_{n\to\infty} P^n f = 0$ then $f=0$.
- 5. There is no function f with $0 \le f \le 1$, $Pf \le f$, $\lim_{n \to \infty} P^n f = 0$ and $m\{x:f(x) = 1\} \neq 0.$

Proof. $1 \Rightarrow 2$ by [3, Chapter II, Theorem B]. $2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5$ is obvious. Finally, if 1 is false so is 5 by the Theorem.

REMARK. If P is induced by a measurable transformation and $X \neq C$ then the function f of 5 can be chosen to be a characteristic function [see 3, (2.6)]. If (X, Σ, m, P) is the one-dimensional discreete random walk with $p \neq 1/2$ [see 1, p. 23] then $X = D$ but if $P1_A \leq 1_A$ then either $A = X$ or $A = \emptyset$.

COROLLARY 2. *If* P is conservative so is P^k .

Proof. Use 3 of Corollary 1: If $0 \le f \le 1$ and $P^k f \le f$ then

$$
(I - P)((I + P + \dots + P^{k-1})f) \ge 0 \text{ and thus}
$$

$$
0 = (I - P)((I + P + \dots + P^{k-1})f) = (I - P^k)f.
$$

REMARK. We followed here the proof of $[4]$ for processes induced by measurable transformations.

For the last Corollary let us introduce some notation: Let $A \in \Sigma$ $m(A) > 0$ put

$$
i_A = \sum_{k=0}^{\infty} (T_{A'} P)^k 1_A
$$

where $(T_B f)(x) = 1_B(x)f(x)$. Then i_A is the smallest function that satisfies

 $1_4 \leq i_4 \leq 1$, $Pi_A \leq i_4$. [See 3, (3.2)].

Also

$$
Pi_A = \lim_{N \to \infty} \sum_{k=0}^{N} (PT_A)^k P1_A = \lim_{N \to \infty} \sum_{n=0}^{N} (PT_A)^k P(1 - T_A \cdot 1)
$$

\n
$$
\leq \lim_{N \to \infty} \left[\sum_{n=0}^{N} (PT_A)^k 1 - \sum_{n=0}^{N} (PT_A)^{k+1} 1 \right] = 1 - \lim_{N \to \infty} (PT_A)^{N+1} 1.
$$

Now the sequence $(T_A \cdot PT_A)^{n}$ is monotone and bounded let its limit be g. Then

$$
P(T_A \cdot PT_A)^n = (PT_A)^{n+1}1 \to Pg
$$

and $T_A \cdot PT_A \cdot g = g$ hence $Pg \geq g$ and $T_A \cdot g = g$.

Thus *if* $A \subset C$ $Pg(x) = g(x)$ $x \in A$ by [3, (2.9)], hence if

$$
A \subset C \lim (PT_A)^{n+1} 1(x) = 0
$$
 $x \in A$ and so $Pi_A(x) = 1$ $x \in A$.

COROLLARY 3. $X=C$ if and only if for every $A, m(A) > 0$, $Pi_A(x) = 1$ $x \in A$.

Proof If $X = C$ we proved the condition above. If D is not empty take the function f as in 5, Corollary 1 and let E be any set with $0 \neq 1_E \leq f$. Now $PPi_E \leq Pi_E$ and if $Pi_E \geq 1_E$ then it follows from the minimality of i_E that $Pi_E \geq i_E$ but then $1_E \le i_E \le \lim_n P^n i_E \le \lim_n P^n f = 0$ which contradicts 5.

REMARK. If one uses the sequence D_k of (d) of the Theorem it follows that for any set $E \subset D_k m({x : Pi_E(x) \neq 1} \cap E) \neq 0$.

Corollary 3 is proved in $[2,$ Theorem 1.1] by different methods.

REFERENCES

1. K. L. Chung, *Markov chains with stationary transition probabilities,* Springer-Verlag, Berlin, 1960.

2. J. Feldman, *5ubinvariant measures/or Markov operators,* Duke Math. J., 29 (1962), 71-98.

3. S. R. Foguel, *The ergodic theory of Markovprocesses, To* be published at Van Nostrand.

4. C. E. Linderholm, *If T is incompressible so is T n,* Ergodic theory. Edited by Fred B. Wright, Academic Press, New York, 1963.